STM32之串口通信

1. 背景知识

一般情况下,设备之间的通信方式可以分成并行通信和串行通信两种。

并行通信

  • 传输原理:数据各个位同时传输。
  • 优点:速度快

  • 缺点:占用引脚资源多

串行通信

  • 传输原理:数据按位顺序传输。

  • 优点:占用引脚资源少

  • 缺点:速度相对较慢

2. 串行通信

按照数据传送方向分类

  • 单工:数据传输只支持数据在一个方向上传输
  • 半双工:允许数据在两个方向上传输。但是,在某一时刻,只允许数据在一个方向上传输,它实际上是一种切换方向的单工通信,它不需要独立的接收端和发送端,两者可以合并一起使用一个端口。
  • 全双工:允许数据同时在两个方向上传输。因此,全双工通信是两个单工通信方式的结合,需要独立的接收端和发送端

image.png

按照通信方式分类

  • 同步通信:带时钟同步信号传输,比如SPI,I2C通信接口
  • 异步通信:不带时钟同步信号,比如UART(通用异步收发器),单总线

在同步通信中,收发设备上方会用一根信号线传输信号,在时钟信号的驱动下双方进行协调,同步数据。例如,通信中通常双方会统一规定在时钟信号的上升沿或者下降沿对数据线进行采样,

在异步通信中不使用时钟信号进行数据同步,他们直接在数据信号中穿插一些用于同步的信号位,或者将主题数据进行打包,以数据帧的格式传输数据。通信中还需要双方约定好数据的传输速率(也就是波特率)等,以便更好地同步。常用的波特率有9600、115200等

在同步通信中,数据信号所传输的内容绝大部分是有效数据,而异步通信中则会包含数据帧的各种标识符,所以同步通信效率高,但是同步通信双方的时钟允许误差小,稍稍始终出错就可能导致数据错乱,异步通信双方的始终允许误差大。

image.png

3. STM32的串口通信接口

  • UART:通用异步收发器

  • USART:通用同步异步收发器

大容量STM32F10x系列芯片,包含3个USART和2个UART

引脚定义

  • RXD:数据输入引脚。数据接受。

  • TXD:数据发送引脚。数据发送。

image.png

image.png

UART特点

  • 全双工异步通信。
  • 分数波特率发生器系统,提供精确的波特率。
     -发送和接受共用的可编程波特率,最高可达4.5Mbits/s
    
  • 可编程的数据字长度(8位或者9位);(带有校验位则为9位)
  • 可配置的停止位(支持1或者2位停止位);
  • 可配置的使用DMA多缓冲器通信。
  • 单独的发送器和接收器使能位。
  • 检测标志:① 接受缓冲器 ②发送缓冲器空 ③传输结束标志
  • 多个带标志的中断源。触发中断。
  • 其他:校验控制,四个错误检测标志。

通信过程

image.png

参数

串口通信的数据包由发送设备通过自身的TXD接口传输到接收设备的RXD接口,通信双方的数据包格式要规约一致才能正常收发数据。STM32中串口异步通信需要定义的参数:起始位,数据位(8位或者9位),奇偶校验位,停止位,波特率设置

UART串口通信的数据包以帧为单位,常用的帧结构为:1位起始位+8位数据位+1位奇偶校验位(可选)+1位停止位。如下图所示:

image.png

奇偶校验位分为奇校验和偶校验两种,是一种简单的数据误码校验方法。奇校验是指每帧数据中,包括数据位和奇偶校验位的全部9个位中1的个数必须为奇数;偶校验是指每帧数据中,包括数据位和奇偶校验位的全部9个位中1的个数必须为偶数。

校验方法除了奇校验(odd)、偶校验(even)之外,还可以有:0 校验(space)、1 校验(mark)以及无校验(noparity)。 0/1校验:不管有效数据中的内容是什么,校验位总为0或者1。

  • USART1的时钟:PCLK2(高速)

  • USART2、USART3、UART4、UART5的时钟:PCLK1(低速)

代码代码使用

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#include "sys.h"
#include "usart.h"
//如果使用ucos,则包括下面的头文件即可.
#if SYSTEM_SUPPORT_OS
#include "includes.h" //ucos 使用
#endif
//加入以下代码,支持printf函数,而不需要选择use MicroLIB
#if 1
#pragma import(__use_no_semihosting)
//标准库需要的支持函数
struct __FILE
{
int handle;
};

FILE __stdout;
//定义_sys_exit()以避免使用半主机模式
int _sys_exit(int x)
{
x = x;
}
//重定义fputc函数
int fputc(int ch, FILE *f)
{
while((USART1->SR&0X40)==0);//循环发送,直到发送完毕
USART1->DR = (u8) ch;
return ch;
}
#endif

#if EN_USART1_RX //如果使能了接收
//串口1中断服务程序
//注意,读取USARTx->SR能避免莫名其妙的错误
u8 USART_RX_BUF[USART_REC_LEN]; //接收缓冲,最大USART_REC_LEN个字节.
//接收状态
//bit15, 接收完成标志
//bit14, 接收到0x0d
//bit13~0, 接收到的有效字节数目
u16 USART_RX_STA=0; //接收状态标记

void uart_init(u32 bound){
//GPIO端口设置
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;

RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOA, ENABLE); //使能USART1,GPIOA时钟

//USART1_TX GPIOA.9
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //PA.9
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出
GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.9

//USART1_RX GPIOA.10初始化
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;//PA10
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输入
GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.10

//Usart1 NVIC 配置
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3 ;//抢占优先级3
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //子优先级3
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能
NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器

//USART 初始化设置

USART_InitStructure.USART_BaudRate = bound;//串口波特率
USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式
USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位
USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式

USART_Init(USART1, &USART_InitStructure); //初始化串口1
USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//开启串口接受中断
USART_Cmd(USART1, ENABLE); //使能串口1

}

void USART1_IRQHandler(void) //串口1中断服务程序
{
u8 Res;
#if SYSTEM_SUPPORT_OS //如果SYSTEM_SUPPORT_OS为真,则需要支持OS.
OSIntEnter();
#endif
if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) //接收中断(接收到的数据必须是0x0d 0x0a结尾)
{
Res =USART_ReceiveData(USART1); //读取接收到的数据

if((USART_RX_STA&0x8000)==0)//接收未完成
{
if(USART_RX_STA&0x4000)//接收到了0x0d
{
if(Res!=0x0a)USART_RX_STA=0;//接收错误,重新开始
else USART_RX_STA|=0x8000; //接收完成了
}
else //还没收到0X0D
{
if(Res==0x0d)USART_RX_STA|=0x4000;
else
{
USART_RX_BUF[USART_RX_STA&0X3FFF]=Res ;
USART_RX_STA++;
if(USART_RX_STA>(USART_REC_LEN-1))USART_RX_STA=0;//接收数据错误,重新开始接收
}
}
}
}
#if SYSTEM_SUPPORT_OS //如果SYSTEM_SUPPORT_OS为真,则需要支持OS.
OSIntExit();
#endif
}
#endif

usart.h

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#ifndef __USART_H
#define __USART_H
#include "stdio.h"
#include "sys.h"

#define USART_REC_LEN 200 //定义最大接收字节数 200
#define EN_USART1_RX 1 //使能(1)/禁止(0)串口1接收

extern u8 USART_RX_BUF[USART_REC_LEN]; //接收缓冲,最大USART_REC_LEN个字节.末字节为换行符
extern u16 USART_RX_STA; //接收状态标记
//如果想串口中断接收,请不要注释以下宏定义
void uart_init(u32 bound);
#endif



main.c

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#include "delay.h"
#include "sys.h"
#include "usart.h"


int main(void)
{
u16 t;
u16 len;
u16 times=0;
delay_init(); //延时函数初始化
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置NVIC中断分组2:2位抢占优先级,2位响应优先级
uart_init(9600); //串口初始化为9600

while(1)
{
if(USART_RX_STA&0x8000)
{
//将接收的数据发送回去
len=USART_RX_STA&0x3fff;//得到此次接收到的数据长度
printf("您发送的消息为:");
for(t=0;t<len;t++)
{
USART_SendData(USART1, USART_RX_BUF[t]);//向串口1发送数据
while(USART_GetFlagStatus(USART1,USART_FLAG_TC)!=SET);//等待发送结束
}
USART_RX_STA=0;
}else
{
times++;
if(times%30==0)LED0=!LED0;//闪烁LED,提示系统正在运行.
delay_ms(10);
}
}
}

CRC16校验

屏幕截图 2022-03-29 173036.jpg

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
void USART1_IRQHandler(void)                	//串口1中断服务程序
{
u8 Res;
#if SYSTEM_SUPPORT_OS //如果SYSTEM_SUPPORT_OS为真,则需要支持OS.
OSIntEnter();
#endif
if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET)
{
//读取接收到的数据
int u;
Res =USART_ReceiveData(USART1);
if((USART_RX_STA&0X3FFF)==7){
unsigned int current_crc_value;
unsigned char hi,lo;
int i, j;
current_crc_value = 0xFFFF; //??#define PRESET_VALUE 0xFFFF
for (i = 0; i < 5; i++)
{
current_crc_value = current_crc_value ^ ((unsigned int)USART_RX_BUF[i]);
for (j = 0; j < 8; j++)
{
if (current_crc_value & 0x0001)
{
current_crc_value = (current_crc_value >> 1) ^ 0xA001; //#define POLYNOMIAL 0xA001 0x8408 // x^16 + x^12 + x^5 + 1
}
else
{
current_crc_value = (current_crc_value >> 1);
}
}
}
lo = current_crc_value &0xff;
hi=(current_crc_value>>8)&0xff;
if(lo==USART_RX_BUF[5]&hi==USART_RX_BUF[6]){
USART_RX_STA|=0x8000;
}else{
USART_RX_STA=0;
}
} else{
USART_RX_BUF[USART_RX_STA&0X3FFF]=Res ;
USART_RX_STA++;
}
}
#if SYSTEM_SUPPORT_OS //如果SYSTEM_SUPPORT_OS为真,则需要支持OS.
OSIntExit();
#endif
}